تخمین پایداری خاکدانه در خاک های جنگلی استان گیلان بوسیله شبکه عصبی مصنوعی و توابع انتقالی رگرسیونی

Authors

عادله علی جانپور شلمانی

محمود شعبانپور

حسین اسدی

فرید باقری

abstract

استفاده از شبکه­های عصبی مصنوعی و توابع انتقالی رگرسیونی در برآورد ویژگی­های دیریافت خاک از جمله پایداری خاکدانه­ها، هزینه و زمان لازم برای اندازه­گیری مستقیم این ویژگی­ها را کاهش می­دهد. در این پژوهش 100 نمونه خاک از جنگل­های استان گیلان تهیه شد. ماده آلی، جرم ویژه ظاهری، کربنات کلسیم معادل، جرم ویژه حقیقی، تخلخل، مقاومت مکانیکی خاک، رس، شن، سیلت، ph و هدایت الکتریکی به عنوان متغیرهای مستقل و میانگین هندسی قطر خاکدانه­ها (gmd) به عنوان متغیر وابسته تعیین شدند. نمونه­ها به صورت تصادفی به دو سری شامل 80 داده برای آموزش و 20 داده برای آزمون مدل­ها تقسیم شدند. برای ایجاد توابع انتقالی رگرسیونی از روش گام به گام و به منظور تشکیل شبکه­های عصبی مصنوعی از الگوریتم آموزشی مارکوارت-لورنبرگ و ساختار پروسپترون سه لایه با شش نرون در لایه پنهان استفاده شد. بر اساس نتایج ماتریس همبستگی بین gmd به­عنوان متغیر وابسته و متغیرهای مستقل، تعداد 18 گروه متغیر مستقل برای داده­ها انتخاب شدند.  این متغیرها یک بار به عنوان متغیرهای ورودی توابع انتقالی رگرسیونی چندگانه و یک بار به عنوان متغیرهای ورودی شبکه عصبی مصنوعی به کار رفتند. بر اساس آماره­های ضریب تبیین تصحیح شده (r2ady)، ریشه دوم میانگین مربعات خطا (rmse) و برتری نسبی (ri) مدل با متغیرهای ورودی ph، جرم ویژه حقیقی، سیلت و مقاومت مکانیکی خاک بهترین مدل­­ شبکه عصبی مصنوعی برای برآورد gmd  داده­های مورد آزمایش شناخته شد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تخمین پایداری خاکدانه در خاک‌های جنگلی استان گیلان بوسیله شبکه عصبی مصنوعی و توابع انتقالی رگرسیونی

استفاده از شبکه­های عصبی مصنوعی و توابع انتقالی رگرسیونی در برآورد ویژگی­های دیریافت خاک از جمله پایداری خاکدانه­ها، هزینه و زمان لازم برای اندازه­گیری مستقیم این ویژگی­ها را کاهش می­دهد. در این پژوهش 100 نمونه خاک از جنگل­های استان گیلان تهیه شد. ماده آلی، جرم ویژه ظاهری، کربنات کلسیم معادل، جرم ویژه حقیقی، تخلخل، مقاومت مکانیکی خاک، رس، شن، سیلت، pH و هدایت الکتریکی به عنوان متغیرهای مستقل و ...

full text

مقایسه توابع انتقالی رگرسیونی و شبکه عصبی مصنوعی در برآورد گنجایش

Measuring the cation exchange capacity (CEC) as one of the most important chemical soil properties is very time consuming and costly. Pedotransfer functions (PTFs) provide an alternative to direct measurement by estimating CEC. The objective of this study was to develop PTFs for predicting CEC of Guilan province soils using artificial neural network (ANN) and multiple-linear regression method a...

full text

مقایسه شبکه‌های ‌عصبی ‌مصنوعی و توابع انتقالی رگرسیونی برای تخمین ظرفیت تبادل ‌کاتیونی خاک در شمال غرب ایران

ظرفیت تبادل کاتیونی خاک میزان بار مثبتی است که در واحد جرم خاک قابل تبادل است. مدل‌سازی و تخمین ظرفیت تبادل کاتیونی شاخصی مفید از حاصلخیزی خاک می‌باشد. ارزیابی و طراحی سناریو‌های مختلف مدیریتی احتیاج به داشتن اطلاعات دقیق بانک اطلاعات خاک دارد. بدین منظور برای برآورد ظرفیت تبادل ‌کاتیونی خاک، 32 نیمرخ در دشت تبریز حفر گردید و جهت انجام آزمایش­های فیزیکی و شیمیایی مانند توزیع اندازه ذرات، کربن آ...

full text

ارزیابی مدل‌های رگرسیونی و شبکه عصبی مصنوعی در تخمین هدایت هیدرولیکی اشباع خاک در مازندران

هدایت هیدرولیکی اشباع یکی از خصوصیات مهم هیدرولیکی در علوم مرتبط با آب، خاک و کشاورزی می­باشد که در مدلسازی حرکت املاح و آب در خاک بسیار اهمیت دارد.اندازه­گیری آزمایشگاهی و صحرایی آن دشوار، وقت‌گیر و پرهزینه بوده و امکان شناسایی تغییرپذیری مکانی و زمانی آن در مقیاس وسیع عملا وجود ندارد.امروزه با استفاده از روش­های غیرمستقیم مانند توابع انتقالی می­توان آن را با دقت بالایی برآورد نمود. پژوهش حاضر...

full text

My Resources

Save resource for easier access later


Journal title:
دانش آب و خاک

Publisher: دانشگاه تبریز

ISSN 2008-5133

volume 21

issue 3 2011

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023